Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
2.
Inflamm Bowel Dis ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635882

RESUMO

BACKGROUND: Inflammatory bowel diseases (IBDs) pose a significant challenge due to their diverse, often debilitating, and unpredictable clinical manifestations. The absence of prognostic tools to anticipate the future complications that require therapy intensification presents a substantial burden to patient private life and health. We aimed to explore whether the gut microbiome is a potential biomarker for future therapy intensification in a cohort of 90 IBD patients. METHODS: We conducted whole-genome metagenomics sequencing on fecal samples from these patients, allowing us to profile the taxonomic and functional composition of their gut microbiomes. Additionally, we conducted a retrospective analysis of patients' electronic records over a period of 10 years following the sample collection and classified patients into (1) those requiring and (2) not requiring therapy intensification. Therapy intensification included medication escalation, intestinal resections, or a loss of response to a biological treatment. We applied gut microbiome diversity analysis, dissimilarity assessment, differential abundance analysis, and random forest modeling to establish associations between baseline microbiome profiles and future therapy intensification. RESULTS: We identified 12 microbial species (eg, Roseburia hominis and Dialister invisus) and 16 functional pathways (eg, biosynthesis of L-citrulline and L-threonine) with significant correlations to future therapy intensifications. Random forest models using microbial species and pathways achieved areas under the curve of 0.75 and 0.72 for predicting therapy intensification. CONCLUSIONS: The gut microbiome is a potential biomarker for therapy intensification in IBD patients and personalized management strategies. Further research should validate our findings in other cohorts to enhance the generalizability of these results.


Ninety IBD patients were followed-up for 10 years after producing a fecal sample. During this period, 36% of the patients required therapy intensification. We show that the gut microbiome at baseline is associated with, and might hold predictive value for future necessity of therapy intensification.

3.
Nat Med ; 30(3): 785-796, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38365950

RESUMO

Multiple clinical trials targeting the gut microbiome are being conducted to optimize treatment outcomes for immune checkpoint blockade (ICB). To improve the success of these interventions, understanding gut microbiome changes during ICB is urgently needed. Here through longitudinal microbiome profiling of 175 patients treated with ICB for advanced melanoma, we show that several microbial species-level genome bins (SGBs) and pathways exhibit distinct patterns from baseline in patients achieving progression-free survival (PFS) of 12 months or longer (PFS ≥12) versus patients with PFS shorter than 12 months (PFS <12). Out of 99 SGBs that could discriminate between these two groups, 20 were differentially abundant only at baseline, while 42 were differentially abundant only after treatment initiation. We identify five and four SGBs that had consistently higher abundances in patients with PFS ≥12 and <12 months, respectively. Constructing a log ratio of these SGBs, we find an association with overall survival. Finally, we find different microbial dynamics in different clinical contexts including the type of ICB regimen, development of immune-related adverse events and concomitant medication use. Insights into the longitudinal dynamics of the gut microbiome in association with host factors and treatment regimens will be critical for guiding rational microbiome-targeted therapies aimed at enhancing ICB efficacy.


Assuntos
Microbioma Gastrointestinal , Melanoma , Microbiota , Humanos , Microbioma Gastrointestinal/genética , Melanoma/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico , Cognição
4.
Sci Rep ; 14(1): 3911, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38366085

RESUMO

The lack of standardization in the methods of DNA extraction from fecal samples represents the major source of experimental variation in the microbiome research field. In this study, we aimed to compare the metagenomic profiles and microbiome-phenotype associations obtained by applying two commercially available DNA extraction kits: the AllPrep DNA/RNA Mini Kit (APK) and the QIAamp Fast DNA Stool Mini Kit (FSK). Using metagenomic sequencing data available from 745 paired fecal samples from two independent population cohorts, Lifelines-DEEP (LLD, n = 292) and the 500 Functional Genomics project (500FG, n = 453), we confirmed significant differences in DNA yield and the recovered microbial communities between protocols, with the APK method resulting in a higher DNA concentration and microbial diversity. Further, we observed a massive difference in bacterial relative abundances at species-level between the APK and the FSK protocols, with > 75% of species differentially abundant between protocols in both cohorts. Specifically, comparison with a standard mock community revealed that the APK method provided higher accuracy in the recovery of microbial relative abundances, with the absence of a bead-beating step in the FSK protocol causing an underrepresentation of gram-positive bacteria. This heterogeneity in the recovered microbial composition led to remarkable differences in the association with anthropometric and lifestyle phenotypes. The results of this study further reinforce that the choice of DNA extraction method impacts the metagenomic profile of human gut microbiota and highlight the importance of harmonizing protocols in microbiome studies.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , DNA Bacteriano/genética , DNA Bacteriano/análise , RNA Ribossômico 16S/genética , DNA , Microbiota/genética , Microbioma Gastrointestinal/genética , Análise de Sequência de DNA , Fezes/microbiologia , Metagenômica/métodos
5.
Nat Commun ; 15(1): 1470, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368394

RESUMO

Disrupted host-microbe interactions at the mucosal level are key to the pathophysiology of IBD. This study aimed to comprehensively examine crosstalk between mucosal gene expression and microbiota in patients with IBD. To study tissue-specific interactions, we perform transcriptomic (RNA-seq) and microbial (16S-rRNA-seq) profiling of 697 intestinal biopsies (645 derived from 335 patients with IBD and 52 from 16 non-IBD controls). Mucosal gene expression patterns in IBD are mainly determined by tissue location and inflammation, whereas the mucosal microbiota composition shows a high degree of individual specificity. Analysis of transcript-bacteria interactions identifies six distinct groups of inflammation-related pathways that are associated with intestinal microbiota (adjusted P < 0.05). An increased abundance of Bifidobacterium is associated with higher expression of genes involved in fatty acid metabolism, while Bacteroides correlates with increased metallothionein signaling. In patients with fibrostenosis, a transcriptional network dominated by immunoregulatory genes is associated with Lachnoclostridium bacteria in non-stenotic tissue (adjusted P < 0.05), while being absent in CD without fibrostenosis. In patients using TNF-α-antagonists, a transcriptional network dominated by fatty acid metabolism genes is linked to Ruminococcaceae (adjusted P < 0.05). Mucosal microbiota composition correlates with enrichment of intestinal epithelial cells, macrophages, and NK-cells. Overall, these data demonstrate the presence of context-specific mucosal host-microbe interactions in IBD, revealing significantly altered inflammation-associated gene-taxa modules, particularly in patients with fibrostenotic CD and patients using TNF-α-antagonists. This study provides compelling insights into host-microbe interactions that may guide microbiota-directed precision medicine and fuels the rationale for microbiota-targeted therapeutics as a strategy to alter disease course in IBD.


Assuntos
Interações entre Hospedeiro e Microrganismos , Doenças Inflamatórias Intestinais , Humanos , Interações entre Hospedeiro e Microrganismos/genética , Fator de Necrose Tumoral alfa/genética , Doenças Inflamatórias Intestinais/patologia , Fenótipo , Inflamação/genética , Inflamação/patologia , Ácidos Graxos , Mucosa Intestinal/patologia
6.
Nature ; 625(7996): 813-821, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38172637

RESUMO

Although the impact of host genetics on gut microbial diversity and the abundance of specific taxa is well established1-6, little is known about how host genetics regulates the genetic diversity of gut microorganisms. Here we conducted a meta-analysis of associations between human genetic variation and gut microbial structural variation in 9,015 individuals from four Dutch cohorts. Strikingly, the presence rate of a structural variation segment in Faecalibacterium prausnitzii that harbours an N-acetylgalactosamine (GalNAc) utilization gene cluster is higher in individuals who secrete the type A oligosaccharide antigen terminating in GalNAc, a feature that is jointly determined by human ABO and FUT2 genotypes, and we could replicate this association in a Tanzanian cohort. In vitro experiments demonstrated that GalNAc can be used as the sole carbohydrate source for F. prausnitzii strains that carry the GalNAc-metabolizing pathway. Further in silico and in vitro studies demonstrated that other ABO-associated species can also utilize GalNAc, particularly Collinsella aerofaciens. The GalNAc utilization genes are also associated with the host's cardiometabolic health, particularly in individuals with mucosal A-antigen. Together, the findings of our study demonstrate that genetic associations across the human genome and bacterial metagenome can provide functional insights into the reciprocal host-microbiome relationship.


Assuntos
Bactérias , Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos , Metagenoma , Humanos , Acetilgalactosamina/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Estudos de Coortes , Simulação por Computador , Faecalibacterium prausnitzii/genética , Microbioma Gastrointestinal/genética , Genoma Humano/genética , Genótipo , Interações entre Hospedeiro e Microrganismos/genética , Técnicas In Vitro , Metagenoma/genética , Família Multigênica , Países Baixos , Tanzânia
7.
Inflamm Bowel Dis ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38289995

RESUMO

BACKGROUND: A pathogenic mutation in the manganese transporter ZIP8 (A391T; rs13107325) increases the risk of Crohn's disease. ZIP8 regulates manganese homeostasis and given the shared need for metals between the host and resident microbes, there has been significant interest in alterations of the microbiome in carriers of ZIP8 A391T. Prior studies have not examined the ileal microbiome despite associations between ileal disease and ZIP8 A391T. METHODS: Here, we used the Pediatric Risk Stratification Study (RISK)  cohort to perform a secondary analysis of 16S ribosomal RNA gene sequencing data obtained from ileal and rectal mucosa to study associations between ZIP8 A391T carrier status and microbiota composition. RESULTS: We found sequence variants mapping to Veillonella were decreased in the ileal mucosa of ZIP8 A391T carriers. Prior human studies have demonstrated the sensitivity of Veillonella to bile acid abundance. We therefore hypothesized that bile acid homeostasis is differentially regulated in carriers of ZIP8 A391T. Using a mouse model of ZIP8 A391T, we demonstrate an increase in total bile acids in the liver and stool and decreased fibroblast growth factor 15 (Fgf15) signaling, consistent with our hypothesis. We confirmed dysregulation of FGF19 in the 1000IBD cohort, finding that plasma FGF19 levels are lower in ZIP8 A391T carriers with ileocolonic Crohn's disease. CONCLUSIONS: In the search for genotype-specific therapeutic paradigms for patients with Crohn's disease, these data suggest targeting the FGF19 pathway in ZIP8 A391T carriers. Aberrant bile acid metabolism may precede development of Crohn's disease and prioritize study of the interactions between manganese homeostasis, bile acid metabolism and signaling, and complicated ileal Crohn's disease.


A pathogenic mutation in the manganese transporter ZIP8 A391T increases the risk of ileal Crohn's disease. Analysis of the ileal microbiome revealed decreased bile acid­sensitive microbes. Animal and human studies confirmed aberrant bile acid signaling ZIP8 A391T carriers.

8.
J Crohns Colitis ; 18(3): 349-359, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37768647

RESUMO

BACKGROUND AND AIMS: Microscopic colitis [MC] is currently regarded as an inflammatory bowel disease that manifests as two subtypes: collagenous colitis [CC] and lymphocytic colitis [LC]. Whether these represent a clinical continuum or distinct entities is, however, an open question. Genetic investigations may contribute important insight into their respective pathophysiologies. METHODS: We conducted a genome-wide association study [GWAS] meta-analysis in 1498 CC, 373 LC patients, and 13 487 controls from Europe and the USA, combined with publicly available MC GWAS data from UK Biobank and FinnGen [2599 MC cases and 552 343 controls in total]. Human leukocyte antigen [HLA] alleles and polymorphic residues were imputed and tested for association, including conditional analyses for the identification of key causative variants and residues. Genetic correlations with other traits and diagnoses were also studied. RESULTS: We detected strong HLA association with CC, and conditional analyses highlighted the DRB1*03:01 allele and its residues Y26, N77, and R74 as key to this association (best p = 1.4 × 10-23, odds ratio [OR] = 1.96). Nominally significant genetic correlations were detected between CC and pneumonia [rg = 0.77; p = 0.048] and oesophageal diseases [rg = 0.45, p = 0.023]. An additional locus was identified in MC GWAS analyses near the CLEC16A and RMI2 genes on chromosome 16 [rs35099084, p = 2.0 × 10-8, OR = 1.31]. No significant association was detected for LC. CONCLUSION: Our results suggest CC and LC have distinct pathophysiological underpinnings, characterised by an HLA predisposing role only in CC. This challenges existing classifications, eventually calling for a re-evaluation of the utility of MC umbrella definitions.


Assuntos
Colite Colagenosa , Colite Linfocítica , Colite Microscópica , Humanos , Estudo de Associação Genômica Ampla , Antígenos HLA/genética , Antígenos de Histocompatibilidade Classe II , Colite Microscópica/genética , Colite Linfocítica/genética
9.
Cancer Cell ; 42(1): 16-34, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38157864

RESUMO

Over the last decade, the composition of the gut microbiota has been found to correlate with the outcomes of cancer patients treated with immunotherapy. Accumulating evidence points to the various mechanisms by which intestinal bacteria act on distal tumors and how to harness this complex ecosystem to circumvent primary resistance to immune checkpoint inhibitors. Here, we review the state of the microbiota field in the context of melanoma, the recent breakthroughs in defining microbial modes of action, and how to modulate the microbiota to enhance response to cancer immunotherapy. The host-microbe interaction may be deciphered by the use of "omics" technologies, and will guide patient stratification and the development of microbiota-centered interventions. Efforts needed to advance the field and current gaps of knowledge are also discussed.


Assuntos
Microbioma Gastrointestinal , Melanoma , Microbiota , Neoplasias , Humanos , Melanoma/terapia , Neoplasias/terapia , Imunoterapia , Interações entre Hospedeiro e Microrganismos
10.
Eur J Prev Cardiol ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38060843

RESUMO

AIMS: Despite treatment advancements, cardiovascular disease remains a leading cause of death worldwide. Identifying new targets is crucial for enhancing preventive and therapeutic strategies. The gut microbiome has been associated with coronary artery disease (CAD), however our understanding of specific changes during CAD development remains limited. We aimed to investigate microbiome changes in participants without clinically manifest CAD with different cardiovascular risk levels and in patients with ST-elevation myocardial infarction (STEMI). METHODS: In this cross-sectional study, we characterized the gut microbiome using metagenomics of 411 faecal samples from individuals with low (n=130), intermediate (n=130) and high (n=125) cardiovascular risk based on the Framingham score, and STEMI patients (n=26). We analysed diversity, and differential abundance of species and functional pathways while accounting for confounders including medication and technical covariates. RESULTS: Collinsella stercoris, Flavonifractor plautii and Ruthenibacterium lactatiformans showed increased abundances with cardiovascular risk, while Streptococcus thermophilus was negatively associated. Differential abundance analysis revealed eight species and 49 predicted metabolic pathways that were differently abundant among the groups. In the gut microbiome of STEMI patients, there was a depletion of pathways linked to vitamin, lipid and amino-acid biosynthesis. CONCLUSION: We identified four microbial species showing a gradual trend in abundance from low-risk individuals to those with STEMI, and observed differential abundant species and pathways in STEMI patients compared to those without clinically manifest CAD. Further investigation is warranted to gain deeper understanding of their precise role in CAD progression and potential implications, with the ultimate goal of identifying novel therapeutic targets.


Despite previous studies demonstrating dysbiosis in STEMI patients, our understanding of the precise microbiome changes across the cardiovascular risk spectrum remains limited. This study addresses this knowledge gap by providing insights into the gut microbiome composition of individuals across varying cardiovascular risk levels and STEMI patients. By examining the gut microbiome of carefully selected participants from the general population with three different risk levels and a unique group of STEMI patients, we identified microbial species and pathways with differential abundance across the groups. Several of these species and pathways are associated with inflammation and lipid metabolism, which are key factors in CAD development. Collinsella stercoris, Flavonifractor plautii and Ruthenibacterium lactatiformans are increasingly abundant, while Streptococcus thermophilus is decreasingly abundant across the cardiovascular risk spectrum. The gut microbiome of STEMI patients showed eight differentially abundant species compared to groups at risk. Notably, four of these species, characterized by an elevated abundance in STEMI patients, have not been previously reported.

11.
Nat Commun ; 14(1): 7968, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042820

RESUMO

Kidney transplant recipients (KTR) have impaired health-related quality of life (HRQoL) and suffer from intestinal dysbiosis. Increasing evidence shows that gut health and HRQoL are tightly related in the general population. Here, we investigate the association between the gut microbiome and HRQoL in KTR, using metagenomic sequencing data from fecal samples collected from 507 KTR. Multiple bacterial species are associated with lower HRQoL, many of which have previously been associated with adverse health conditions. Gut microbiome distance to the general population is highest among KTR with an impaired physical HRQoL (R = -0.20, P = 2.3 × 10-65) and mental HRQoL (R = -0.14, P = 1.3 × 10-3). Physical and mental HRQoL explain a significant part of variance in the gut microbiome (R2 = 0.58%, FDR = 5.43 × 10-4 and R2 = 0.37%, FDR = 1.38 × 10-3, respectively). Additionally, multiple metabolic and neuroactive pathways (gut brain modules) are associated with lower HRQoL. While the observational design of our study does not allow us to analyze causality, we provide a comprehensive overview of the associations between the gut microbiome and HRQoL while controlling for confounders.


Assuntos
Microbioma Gastrointestinal , Transplante de Rim , Humanos , Qualidade de Vida , Microbioma Gastrointestinal/genética , Transplante de Rim/efeitos adversos , Fezes/microbiologia , Disbiose/microbiologia
12.
Trends Mol Med ; 29(10): 830-842, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37558549

RESUMO

Oxidative stress (OS) is an important pathophysiological mechanism in inflammatory bowel disease (IBD). However, clinical trials investigating compounds directly targeting OS in IBD yielded mixed results. The NRF2 (nuclear factor erythroid 2-related factor 2)/Keap1 (Kelch-like ECH-associated protein 1) pathway orchestrates cellular responses to OS, and dysregulation of this pathway has been implicated in IBD. Activation of the NRF2/Keap1 pathway may enhance antioxidant responses. Although this approach could help to attenuate OS and potentially improve clinical outcomes, an overview of human evidence for modulating the NRF2/Keap1 axis and more recent developments in IBD is lacking. This review explores the NRF2/Keap1 pathway as potential therapeutic target in IBD and presents compounds activating this pathway for future clinical applications.


Assuntos
Doenças Inflamatórias Intestinais , Fator 2 Relacionado a NF-E2 , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Estresse Oxidativo , Antioxidantes/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/etiologia
13.
Front Microbiol ; 14: 1223120, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637104

RESUMO

The rising use of pesticides in modern agriculture has led to a shift in disease burden in which exposure to these chemicals plays an increasingly important role. The human gut microbiome, which is partially responsible for the biotransformation of xenobiotics, is also known to promote biotransformation of environmental pollutants. Understanding the effects of occupational pesticide exposure on the gut microbiome can thus provide valuable insights into the mechanisms underlying the impact of pesticide exposure on health. Here we investigate the impact of occupational pesticide exposure on human gut microbiome composition in 7198 participants from the Dutch Microbiome Project of the Lifelines Study. We used job-exposure matrices in combination with occupational codes to retrieve categorical and cumulative estimates of occupational exposures to general pesticides, herbicides, insecticides and fungicides. Approximately 4% of our cohort was occupationally exposed to at least one class of pesticides, with predominant exposure to multiple pesticide classes. Most participants reported long-term employment, suggesting a cumulative profile of exposure. We demonstrate that contact with insecticides, fungicides and a general "all pesticides" class was consistently associated with changes in the gut microbiome, showing significant associations with decreased alpha diversity and a differing beta diversity. We also report changes in the abundance of 39 different bacterial taxa upon exposure to the different pesticide classes included in this study. Together, the extent of statistically relevant associations between gut microbial changes and pesticide exposure in our findings highlights the impact of these compounds on the human gut microbiome.

14.
Front Cell Infect Microbiol ; 13: 1202035, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37583444

RESUMO

Background: People living with human immunodeficiency virus (PLHIV) are exposed to chronic immune dysregulation, even when virus replication is suppressed by antiretroviral therapy (ART). Given the emerging role of the gut microbiome in immunity, we hypothesized that the gut microbiome may be related to the cytokine production capacity of PLHIV. Methods: To test this hypothesis, we collected metagenomic data from 143 ART-treated PLHIV and assessed the ex vivo production capacity of eight different cytokines [interleukin-1ß (IL-1ß), IL-6, IL-1Ra, IL-10, IL-17, IL-22, tumor necrosis factor, and interferon-γ] in response to different stimuli. We also characterized CD4+ T-cell counts, HIV reservoir, and other clinical parameters. Results: Compared with 190 age- and sex-matched controls and a second independent control cohort, PLHIV showed microbial dysbiosis that was correlated with viral reservoir levels (CD4+ T-cell-associated HIV-1 DNA), cytokine production capacity, and sexual behavior. Notably, we identified two genetically different P. copri strains that were enriched in either PLHIV or healthy controls. The control-related strain showed a stronger negative association with cytokine production capacity than the PLHIV-related strain, particularly for Pam3Cys-incuded IL-6 and IL-10 production. The control-related strain is also positively associated with CD4+ T-cell level. Conclusions: Our findings suggest that modulating the gut microbiome may be a strategy to modulate immune response in PLHIV.


Assuntos
Infecções por HIV , HIV , Humanos , Interleucina-10 , Interleucina-6 , Disbiose , Infecções por HIV/tratamento farmacológico , Citocinas
15.
Immunity ; 56(6): 1376-1392.e8, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37164013

RESUMO

Phage-displayed immunoprecipitation sequencing (PhIP-seq) has enabled high-throughput profiling of human antibody repertoires. However, a comprehensive overview of environmental and genetic determinants shaping human adaptive immunity is lacking. In this study, we investigated the effects of genetic, environmental, and intrinsic factors on the variation in human antibody repertoires. We characterized serological antibody repertoires against 344,000 peptides using PhIP-seq libraries from a wide range of microbial and environmental antigens in 1,443 participants from a population cohort. We detected individual-specificity, temporal consistency, and co-housing similarities in antibody repertoires. Genetic analyses showed the involvement of the HLA, IGHV, and FUT2 gene regions in antibody-bound peptide reactivity. Furthermore, we uncovered associations between phenotypic factors (including age, cell counts, sex, smoking behavior, and allergies, among others) and particular antibody-bound peptides. Our results indicate that human antibody epitope repertoires are shaped by both genetics and environmental exposures and highlight specific signatures of distinct phenotypes and genotypes.


Assuntos
Anticorpos , Bacteriófagos , Humanos , Antígenos , Epitopos/genética , Peptídeos
16.
Immunity ; 56(6): 1393-1409.e6, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37164015

RESUMO

Inflammatory bowel diseases (IBDs), e.g., Crohn's disease (CD) and ulcerative colitis (UC), are chronic immune-mediated inflammatory diseases. A comprehensive overview of an IBD-specific antibody epitope repertoire is, however, lacking. Using high-throughput phage-display immunoprecipitation sequencing (PhIP-Seq), we identified antibodies against 344,000 antimicrobial, immune, and food antigens in 497 individuals with IBD compared with 1,326 controls. IBD was characterized by 373 differentially abundant antibody responses (202 overrepresented and 171 underrepresented), with 17% shared by both IBDs, 55% unique to CD, and 28% unique to UC. Antibody reactivities against bacterial flagellins dominated in CD and were associated with ileal involvement, fibrostenotic disease, and anti-Saccharomyces cerevisiae antibody positivity, but not with fecal microbiome composition. Antibody epitope repertoires accurately discriminated CD from controls (area under the curve [AUC] = 0.89), and similar discrimination was achieved when using only ten antibodies (AUC = 0.87). Individuals with IBD thus show a distinct antibody repertoire against selected peptides, allowing clinical stratification and discovery of immunological targets.


Assuntos
Bacteriófagos , Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Anticorpos , Epitopos
17.
Gut Microbes ; 15(1): 2201155, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37074215

RESUMO

The human gut microbiota continues to demonstrate its importance in human health and disease, largely owing to the countless number of studies investigating the fecal microbiota. Underrepresented in these studies, however, is the role played by microbial communities found in the small intestine, which, given the essential function of the small intestine in nutrient absorption, host metabolism, and immunity, is likely highly relevant. This review provides an overview of the methods used to study the microbiota composition and dynamics along different sections of the small intestine. Furthermore, it explores the role of the microbiota in facilitating the small intestine in its physiological functions and discusses how disruption of the microbial equilibrium can influence disease development. The evidence suggests that the small intestinal microbiota is an important regulator of human health and its characterization has the potential to greatly advance gut microbiome research and the development of novel disease diagnostics and therapeutics.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Intestino Delgado , Fezes
18.
Gut ; 72(8): 1472-1485, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36958817

RESUMO

OBJECTIVE: Inflammatory bowel disease (IBD) is a multifactorial immune-mediated inflammatory disease of the intestine, comprising Crohn's disease and ulcerative colitis. By characterising metabolites in faeces, combined with faecal metagenomics, host genetics and clinical characteristics, we aimed to unravel metabolic alterations in IBD. DESIGN: We measured 1684 different faecal metabolites and 8 short-chain and branched-chain fatty acids in stool samples of 424 patients with IBD and 255 non-IBD controls. Regression analyses were used to compare concentrations of metabolites between cases and controls and determine the relationship between metabolites and each participant's lifestyle, clinical characteristics and gut microbiota composition. Moreover, genome-wide association analysis was conducted on faecal metabolite levels. RESULTS: We identified over 300 molecules that were differentially abundant in the faeces of patients with IBD. The ratio between a sphingolipid and L-urobilin could discriminate between IBD and non-IBD samples (AUC=0.85). We found changes in the bile acid pool in patients with dysbiotic microbial communities and a strong association between faecal metabolome and gut microbiota. For example, the abundance of Ruminococcus gnavus was positively associated with tryptamine levels. In addition, we found 158 associations between metabolites and dietary patterns, and polymorphisms near NAT2 strongly associated with coffee metabolism. CONCLUSION: In this large-scale analysis, we identified alterations in the metabolome of patients with IBD that are independent of commonly overlooked confounders such as diet and surgical history. Considering the influence of the microbiome on faecal metabolites, our results pave the way for future interventions targeting intestinal inflammation.


Assuntos
Arilamina N-Acetiltransferase , Colite Ulcerativa , Doenças Inflamatórias Intestinais , Humanos , Estudo de Associação Genômica Ampla , Doenças Inflamatórias Intestinais/metabolismo , Colite Ulcerativa/metabolismo , Metaboloma , Fezes , Arilamina N-Acetiltransferase/metabolismo
19.
JAMA Oncol ; 9(5): 705-709, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36795408

RESUMO

Importance: Immune checkpoint blockade (ICB) has improved the survival of patients with advanced melanoma. Durable responses are observed for 40% to 60% of patients, depending on treatment regimens. However, there is still large variability in the response to treatment with ICB, and patients experience a range of immune-related adverse events of differing severity. Nutrition, through its association with the immune system and gut microbiome, is a poorly explored but appealing target with potential to improve the efficacy and tolerability of ICB. Objective: To investigate the association between habitual diet and response to treatment with ICB. Design, Setting, and Participants: This multicenter cohort study (the PRIMM study) was conducted in cancer centers in the Netherlands and UK and included 91 ICB-naive patients with advanced melanoma who were receiving ICB between 2018 and 2021. Exposures: Patients were treated with anti-programmed cell death 1 and anti-cytotoxic T lymphocyte-associated antigen 4 monotherapy or combination therapy. Dietary intake was assessed through food frequency questionnaires before treatment. Main Outcomes and Measures: Clinical end points were defined as overall response rate (ORR), progression-free survival at 12 months (PFS-12), and immune-related adverse events that were grade 2 or higher. Results: There were a total of 44 Dutch participants (mean [SD] age, 59.43 [12.74] years; 22 women [50%]) and 47 British participants (mean [SD] age, 66.21 [16.63] years; 15 women [32%]). Dietary and clinical data were prospectively collected from 91 patients receiving ICB between 2018 and 2021 for advanced melanoma in the UK and the Netherlands. Logistic generalized additive models revealed positive linear associations between a Mediterranean dietary pattern that was high in whole grains, fish, nuts, fruit, and vegetables and the probability of ORR and PFS-12 (probability of 0.77 for ORR; P = .02; false discovery rate, 0.032; effective degrees of freedom, 0.83; probability of 0.74 for PFS-12; P = .01; false discovery rate, 0.021; effective degrees of freedom, 1.54). Conclusions and Relevance: This cohort study found a positive association between a Mediterranean diet, a widely recommended model of healthy eating, and response to treatment with ICB. Large prospective studies from different geographies are needed to confirm the findings and further elucidate the role of diet in the context of ICB.


Assuntos
Dieta Mediterrânea , Melanoma , Animais , Inibidores de Checkpoint Imunológico/uso terapêutico , Estudos de Coortes , Estudos Prospectivos , Melanoma/tratamento farmacológico
20.
BMC Cancer ; 23(1): 166, 2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36805683

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of melanoma and other cancers. However, no reliable biomarker of survival or response has entered the clinic to identify those patients with melanoma who are most likely to benefit from ICIs. Glycosylation affects proteins and lipids' structure and functions. Tumours are characterized by aberrant glycosylation which may contribute to their progression and hinder an effective antitumour immune response. METHODS: We aim at identifying novel glyco-markers of response and survival by leveraging the N-glycome of total serum proteins collected in 88 ICI-naive patients with advanced melanoma from two European countries. Samples were collected before and during ICI treatment. RESULTS: We observe that responders to ICIs present with a pre-treatment N-glycome profile significantly shifted towards higher abundancy of low-branched structures containing lower abundances of antennary fucose, and that this profile is positively associated with survival and a better predictor of response than clinical variables alone. CONCLUSION: While changes in serum protein glycosylation have been previously implicated in a pro-metastatic melanoma behaviour, we show here that they are also associated with response to ICI, opening new avenues for the stratification of patients and the design of adjunct therapies aiming at improving immune response.


Assuntos
Inibidores de Checkpoint Imunológico , Melanoma , Humanos , Melanoma/tratamento farmacológico , Instituições de Assistência Ambulatorial , Europa (Continente) , Polissacarídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...